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ABSTRACT

Lidar remote sensing of micro-Doppler signals is important for many military applications
including characterization and identification of ground and airborne targets (NCTID) and battle
damage assessment.  The single most important performance metric of these sensors is their
velocity measurement precision.  The velocity precision of a micro-Doppler lidar is limited by
any one of various noise sources, which include shot-noise, local-oscillator frequency noise,
speckle decorrelation noise and refractive turbulence piston noise.  In this paper, we present a
theory, which describes these noise sources and their wavelength dependence.  For example, it
will be shown that the turbulence piston noise is wavelength independent, while the wavelength
dependence of speckle decorrelation noise depends upon whether or not the target is resolved.
Furthermore, the noise sources are, to a first-order, independent of the interrogation waveform
classification (i.e., pulsed or CW).  The results from recent field measurements using a doublet-
pulse and CW lidar are presented.
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1. INTRODUCTION

The capability of micro-Doppler sensors have been the subject of various studies in the recent past.  High-
performance micro-Doppler sensors are planned for a variety of military and commercial applications.
The primary military applications include characterization and identification of ground and airborne
targets and battle damage assessment.

CTI has been actively involved in the development of eye-safe, solid-state 2µm coherent micro-Doppler
laser radar sensors to measure the vibration spectra of distant hard targets.  The waveform of these sensors
span a variety of formats, which include CW, doublet-pulse, and agile pulse waveforms.  Multi-pixel
coherent array micro-Doppler sensors are also being developed.  CTI has recently demonstrated the first
pulsed-laser vibration sensor for micro-Doppler applications.  For these measurements a doublet-pulse
waveform was chosen.  CTI is currently pursuing the development of more complex pulsed formats
(triplet, quadruplet, and agile-pulse waveforms).

The velocity measurement precision of these sensors is governed by a variety noise sources, which
include shot-noise, local-oscillator frequency noise, speckle decorrelation noise and refractive turbulence
piston noise.  The shot-noise (i.e. photon noise) represents the theoretical lower bound on the velocity
measurement precision.  The other noise sources add to this lower bound.  In Section 2, we present the
basic theory, which describes these noise sources and their wavelength dependence.  Data from
simulations and real measurements are provided to substantiate the theory.  In Section 3 we present
results from a recent short and long range ground-based measurement campaign using both a doublet-
pulse and CW micro-Doppler lidar sensor.

2. THEORY

2.1. Doublet-Pulse Waveform

The doublet-pulse or pulse-pair waveform is a limiting case of a general class of pulsed waveforms.  It is
routinely used in Doppler radar for both hard target and aerosol target applications.  The pulse pair and
poly-pulse-pair transmit formats have been applied to microwave radar for radial velocity and spectral
width probing of weather echoes.1  CTI has pioneered the development of the pulse-pair waveform for
lasers using eyesafe, near-infrared optical wavelengths, and is in the process of developing agile versions
(adaptive multiple pulse) of these transceivers for multi-function remote sensing applications.

The doublet-pulse provides coherent Doppler lidar systems a substantial time-bandwidth (TB) product of
10,000 or more enabling simultaneous high resolution range and precision velocity measurement
capability, with a very modest processing, data throughput, and storage requirements.  Figure 1 illustrates
the doublet-pulse waveform format.  The waveform comprises a pair of pulselets, each of duration τ,
separated by Ts seconds.  The range resolution of the lidar measurement is governed by the pulselet
duration τ, while the velocity precision varies, to a first order, as the reciprocal of the pulselet separation,
Ts.  Ambiguities in the velocity measurement arise as a result of the periodic structure of the waveform.
The velocity ambiguity interval is given by Va = λ/2Ts, where λ is the operating wavelength.  These
ambiguities can be readily dealt with in software in many applications.  Higher order variants of the
general doublet-pulse (e.g., the triplet-pulse) would also help eliminate such ambiguities.

                                                     
1 Zrnic, D.S., "Estimation of spectral moments for weather echoes," IEEE Trans. Geosci. Electron. GE-17, 113
(1979).
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Figure 1: General doublet-pulse format
Unlike radar, the frequency and phase of the transmitted waveform are not constant from one laser
pulselet to the next.  Enhancements to the radar pulse-pair algorithm, developed at CTI, have solved this
problem.  The lidar doublet-pulse algorithm corrects for the random phase and frequency of the individual
pulselets from measures of the transmitted pulselets called “monitor” samples.  With these monitor
samples the potential errors from arbitrary phase relationships (phase or frequency offset and chirp)
between the pulselets are easily mitigated in the lidar algorithm.

The general doublet pulse coherent lidar concept provides a truly novel, robust sensor architecture that
can be applied across a broad range of applications and operating wavelengths.  It enables extremely
efficient, low cost processing architectures for very high TB waveforms.  Figure 2 provides a simplified
illustration the doublet-pulse measurement process.  The doublet-pulse waveform essentially measures the
target velocity by measuring the phase change between the first and second pulselet caused as the range to
target is increased or decreased by an amount V⋅Ts, where V is the target velocity.  In Figure 3 we provide
sample doublet-pulse lidar signals from a pair of range-resolved targets (one stationary and one
vibrating).  This figure illustrates the doublet-pulse measurement process and its potential for combined
high-resolution range and precision velocity measurements.
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Figure 2: Principle of velocity measurement with the pulsed waveform
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Figure 3: Example dual target doublet-pulse RF signals
Selected doublet pulse monitor signals and returns from a pair of range-resolved targets: first
pulselet (solid) and second pulselet shifted in time (dash).  The selected samples were chosen
such that the two monitor signals exhibit a near zero phase difference.  The first target is
stationary and its returns exhibit a net phase difference equal to the phase difference of the two
monitor signals.  The second target was vibrating at 10.005 kHz.  The relative phase relationship
of the second target returns are non-zero and are a function of the target velocity and pulselet
separation time.

2.2. Composite Velocity Precision

There are a variety of sources that introduce noise into the velocity measurement process.  These noise
sources are present regardless of the waveform format (general-pulse, doublet-pulse, CW, etc.).  Some of
these noise sources include photon noise, signal coherence noise, local oscillator phase or frequency
noise, and refractive turbulence induced piston noise.  The composite effect these noise sources are
modeled as the RMS sum of the noise from each source.  That is

( ) N
turbLOcohsn VVVVV ...2222 +σ+σ+σ+σ=σ . (1)

Where σV is the velocity measurement precision and N is the number of independent waveforms
averaged.  In the limit of large noise, the doublet-pulse velocity precision saturates to a level given by
σVsat = Va/√12.  Where Va = λ/2Ts is the velocity ambiguity interval.  This result is a consequence of
uniformly distributed velocity noise over the ambiguity interval.  For a CW waveform the corresponding
velocity interval is the velocity search bandwidth (typically half the data sample frequency).  The effect of
this precision saturation can be included in the velocity precision model, via
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/
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(2)

In the following subsections we provide theoretical descriptions of these noise terms and real or simulated
data, which substantiates or validates the theory.
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2.3. Photon or Shot-Noise (CRLB)

For a coherent detection receiver, photon (shot) noise represents the fundamental lower bound on velocity
estimation precision.  This limit is called the Cramer-Rao lower bound (CRLB).  Van Trees2 provides a
general formula for this lower bound for an arbitrary waveform.  His expression can be written as

γ
γ+

σπ
λ≥σ

)1(

24 t
snV . (3)

Where γ is the waveform’s Carrier-to-Noise Ratio (CNR) and σt is the standard deviation of the intensity
waveform or the waveform “effective duration.”  For a high time-bandwidth product doublet pulse
waveform, the effective duration can be shown to be ~ Ts √[A(1-A)], where A is the ratio of the intensity
of one of the pulselets to the total intensity.  The term √[A(1-A)] is the geometric mean of the two
fractional intensities.  When A = 1/2 the effective duration is Ts/2.  Using this result, the CRLB for the a
high time-bandwidth product doublet-pulse waveform is given by
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Where, γ1 and γ2 are the CNR of the first and second pulselets.  In the left panel of Figure 4 we present the
results of a Monte Carlo simulation of the doublet pulse algorithm.  The simulation consisted of
generating 104 pulse-pair waveforms each with a constant amplitude and random Gaussian shot-noise to
affect a prescribed CNR.  The circles in the plot represent Monte Carlo simulation results.  The solid lines
represent the CRLB modified to include the effect of saturation (i.e. Eq 2) for each of four levels of
waveform averaging (N = 1, 3, 10 and 100).  As can be seen in the data, the simulation results agree with
the theory.  Also shown on the plot are results from lidar measurements.  This data is indicated by the
plus (+) symbols.  This data is in close agreement with the theory.  Part of the bias is from an energy
imbalance (A = 2/3) and other systematic errors.  At high CNR the lidar data saturates due to a finite
monitor CNR of ~ 30 dB.

In the right panel of Figure 4, we present results when the signal amplitudes were randomized according
to a Rayliegh distribution, corresponding to an exponentially distributed signal intensity.  This
distribution is typical for speckled lidar returns in the absence of refractive turbulence.  The theoretical
curves (solid lines) take into account the fluctuations of the CNR about the mean <γ> for an exponentially
distributed intensity.  The theoretical model incorporates the effect of variable waveform intensity via
conditional statistics.  Accordingly, the standard deviation of the velocity estimates are given by

∫ γγσ=σ γγ dp
snsn VV )(2 . (5)

Where, σ2
V|γ is the conditional velocity measurement variance (i.e., the CRLB of Eq. 4 modified to

include the effects of velocity noise saturation over the ambiguity interval via Eq. 2) and of pγ(γ) is the
probability density function of the CNR.  For variable degrees of averaging, N, the statistics of the
averaged intensity are no longer exponentially distributed.  Instead the average intensity follows a
Gamma distribution, which is given by

( ) )(//)( /1 NeNp NNN Γγγ=γ γγ−−
γ . (6)

                                                     
2 Van Trees, H. L., Eq. 10.95, Detection, Estimation, and Modulation Theory, Part III: Radar-Sonar Signal
Processing and Gaussian Signals in Noise, John Wiley & Sons, New York, 1971.



Where Γ(x) is the gamma function.  Eq 5 was evaluated numerically to generate the theoretical curves
shown in the right panel of Figure 4.  As can be seen there is good agreement between the numerically
evaluated theory and the Monte-Carlo simulations (circles on the curve).  For moderate to large number
of averages (N > 5) there is virtually no difference between the fading and non-fading velocity precision.
For single waveform averaging, the velocity precision of the lidar returns from a diffuse-target (fading) is
approximately 2.5 times larger than that from a specular target (non-fading), for a CNR in range of 20 to
40 dB.
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Figure 4: Doublet-pulse velocity precision for a glint and diffuse target.
Velocity precision as a function of the CNR and the degree of signal averaging, N, for a 2 µm
doublet pulse transceiver with 80 µs pulselet separation: without (left) and with Rayleigh fading
(right).  Circles indicate results from Monte Carlo simulations, plus symbols are results from lidar
measurement and solid lines are theory.

2.4. Target Decorrelation Noise

Target decorrelation or coherence noise can result from a variety of target mechanisms.  For example
target rotation or translation results in speckle translation and/or boiling.  This decorrelation results in a
broadening of the signal spectrum, which introduces noise in the velocity estimation process.  Since finite
signal coherence results in saturation of the velocity precision that can be obtained in a single signal
coherence time, CNR in excess of about 10 dB does not provide significant.  The design of a lidar aimed
at the best velocity precision is one, which is able to adapt to achieve a CNR in the 10 dB range.  If excess
power is available, it is better to use this power to make more measurements (transmit more pulses) in
order to benefit from increased averaging to improve the velocity measurement precision by √N.  If a cw
lidar has CNR in the 0-10 dB range then it will provide the best measurement precision since it can make
the maximum number of coherent measurements in the measurement dwell time.  An optimally designed
pulsed system with one or more pulse pairs per signal coherence time will achieve a similar velocity
measurement precision.  In cases where the cw CNR is below 0-10 dB an agile pulsed lidar – one that can
lower the PRF and increase the energy per pulse-- will allow the CNR to be increased to 0-10 dB
allowing better precision.

For the pulse-pair waveform, the velocity precision as a function of CNR and signal coherence has been
derived by Zrnic3.

                                                     
3 R. J. Doviak and D. S. Zrnic ‘Doppler Radar and Weather Observations’, Academic Press 1984, Eq. 6.22b
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Where, ρv(τ) is the velocity autocorrelation function given by
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and Tc is the signal coherence time.  Zrnic’s expression takes into account both signal decorrelation and
photon-noise given by the CRLB.  Using the formalism defined in Eq 1, we can rewrite Zrnic’s
expression as the RMS sum of the photon or shot-noise term and the coherence term.  That is
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Solving for the coherence term yields
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Which has a weak dependence on the CNR.  This dependence is thought to be an artifact of
approximations imposed in Zrnic’s formula.  For small Ts/Tc and CNR >> 1, the pulse-pair velocity
precision is well approximated by

c
V Tcoh π

λ≈σ
4

(11)

In Figure 5 we plot Zrnic’s formula for the pulse-pair mean velocity estimation precision normalized by
the true velocity standard deviation vs the ratio of the pulselet separation time to the signal coherence
time Tc.  There is an optimum pair spacing or sampling interval that yields minimum error.  The diamonds
in the figure indicates this optimal spacing.  For the pulse-pair waveform, the increase of error at large
pair spacing is due to loss of coherence between the two samples.  On the other hand, at too small a
spacing the precision of the estimate is dominated by the CRLB.  Minimum error is achieved by spacing
the pairs to be about 65% of the coherence time near a CNR of 10 dB and at a smaller fraction at high
CNR.

Equation 7 (Figure 5 right panel) shows that in order to obtain performance within a factor of two of the
velocity saturation value , σVcoh = λ/4πTc, due to the finite signal coherence, then the CNR should be
greater than ~6 dB and the pulse spacing optimized.  For operationally relevant CNRs in the 0-10 dB
range, the pulse spacing, Ts, should be nominally within the range of 0.2Tc – 1.2 Tc in order to achieve
performance that is within a factor of two of the performance achieved at the optimal spacing.  For CNRs
greater than 10 dB the requirement on the lower limit of the pulse spacing is further relaxed (e.g., at 40
dB, near optimal performance is obtained with pulse separations over the two orders of magnitude
between ~ 0.01 Tc - Tc range).
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Figure 5: Velocity estimate precision for the doublet-pulse waveform
Pulse-pair velocity estimate precision normalized by (λ/4πTc) vs. the ratio of the pulselet
separation time to the coherence time.  Precision due to signal decorrelation alone (left) and
combined with CRLB (right).  The diamonds indicate optimal values of the ratio of the separation
time to the coherence time.

The inverse linear dependence on of the velocity precision on the coherence time has been verified with
CW lidar measurements of a resolved rotating target.  For a Gaussian beam illumination the velocity
distribution has a Gaussian shape given by

( ) )2/exp(2))/(2exp()( 222/122
cohcoh VVbV VVkVf σ−πσ=ωΩ−=

−
. (12)

Where, k is a constant of proportionality.  Therefore the velocity standard deviation is given by

obV R
coh

πωλΩ≈ωΩ=σ 2/2/ .  For a well resolved rotating target (13)

Where ωo is the transmit beam radius.  The coherence time is therefore given by

RT obc Ωω=ωΩπλ= 2/2/ .  For a well resolved rotating target (14)

Equation 13 is plotted in Figure 6 along with CW lidar velocity precision estimates.  The data fits
extremely well to the model.  For a highly unresolved rotating target (Dt<<ωb), the velocity distribution is
governed by the target diameter Dt rather than the beam diameter.  Consequently, the velocity precision
becomes both wavelength and range independent.  An approximate formula for this condition is given by

2/tV D
coh

Ω=σ .  For a highly unresolved rotating target. (15)

In the transition between resolved and highly unresolved there is a smooth transition from equation 13 to
equation 15.
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Figure 6: CW lidar velocity measurement precision of a resolved diffuse target rotation
Velocity measurement precision from CW lidar for a resolved diffuse target under relatively high
CNR conditions, when the processing dwell time was fixed to a time less than the signal
coherence time; ωb is the 1/e2 beam radius on the resolved target and Ω is the target rotation rate,
which is proportional to the inverse of the coherence time.

2.5. Local Oscillator Laser Frequency Noise

Local oscillator frequency noise is another source, which can degrade the velocity precision of a coherent
lidar.  The relevant parameter is the change in frequency as a function of target round-trip time.  One
measure of this frequency noise is the root of the frequency deviation structure function Dδf(τ).  The
structure function provides information about the frequency deviation as a function of delay time.  It is
defined as the expected value of the square difference of the frequency-deviation δf from itself delayed in
time.

[ ]2)()()( τ−δ−δ=τδ tftfD f . (16)

)(22)( 2 τ−σ=τ δδδ fff RD . (17)

Where Rδf(τ) is the autocorrelation function of δf.  Therefore, the structure function is directly related to
the Fourier Transform of the Power Spectrum.  From Eq 17 we see that at long delays the structure
function saturates at twice variance of the frequency deviation.  It therefore makes sense to define the
square root of the structure function divided by two as the delay-dependent standard deviation of the
frequency deviation.  That is

2/)()( τ=τσ δδ ff D . (18)

When the signal to be analyzed is the result of the beating of two CW lasers (each assumed to have
identical frequency statistics), one can expect that the delay-dependent frequency standard deviation of



one of the lasers is that of Eq 17 divided root(2).  Therefore we estimate the delay dependent velocity
precision contribution from the local oscillator as

22/)()( λτσ=τσ δfVLO
. (19)

In Figure 7 we present the frequency deviation vs. time of the beat signal between two different local
oscillators (left panel) and the corresponding velocity estimate precision (right panel).  This data suggests
that the long-term rms frequency noise is ~ 20 kHz and at a delay of 10 µs it is ~ 1.8 mm/s.  The
frequency measurement noise for this data set is estimated to be ~ 90 Hz.
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Figure 7: Measurements of the frequency deviation of the beat frequency between two
diode-pumped CW 2µm local oscillators.
Frequency deviation vs. time (left panel) and the root velocity structure function divided by four
(right panel).  The signal CNR was ~ 36 dB.  The data was processed with a processing dwell
time of 12.8 µs corresponding to a estimated measurement precision of 90 Hz.

The data presented in the figures above corresponded to the beating of two CW local oscillator lasers.
From this data, it is impossible to determine the relative contribution of each laser to the composite noise
spectrum.  One technique to measure of the frequency noise of a single source is the so called “Delayed
Self Offset Homodyne” technique.  However, for this technique to be viable, a relatively long ~ 10 µs
noiseless delay line is required.  For a 1.5 µm laser, a 1 km fiber delay line can be utilized for this
measurement.  However at 2µm, the fiber extinction loss in glass fiber is large for lengths on the order of
1 km.

Another method to measure the effect of local oscillator noise of a single source is to use an atmospheric
delay line, presuming refractive turbulence and photon noise are significantly lower than the local
oscillator noise.  The data in Figure 8 is an example of two velocity measurements of a stationary target at
7.5 km (50 µs delay).  This data suggests that the local oscillator noise is the dominant noise source in the
measurement, because it was reduced by a factor of two by employing a quieter laser controller.  The
level of frequency noise in this data is ~ 2 kHz (left panel) and 0.9 kHz (right panel).  In the next section
we show that refractive turbulence piston noise was negligible compared to the measured velocity noise.

The structure function suggests the velocity precision is linearly related to the delay time for small delays.
The data from the quieter controller suggests a constant of proportionality of 19τ m/s2.

)/(19)( 2sm
LOV τ=τσ  (for τ << 100 µs) (20)



Vibration Amplitude Spectrum 0/0 Gates

0 50 100 150 200
Frequency (Hz)

100

101

102

103

104
A

m
p

lit
u

d
e 

[(
u

m
/s

)/
H

z1/
2 ]

Cn2 = 2.00e-014 m-2/3

Vp = 1.00 m/s
FsAvg: 498.50 Hz

RMS: 2.03 mm/s

Vibration Amplitude Spectrum 0/0 Gates

0 50 100 150 200
Frequency (Hz)

100

101

102

103

104

A
m

p
lit

u
d

e 
[(

u
m

/s
)/

H
z1/

2 ]

Cn2 = 2.00e-014 m-2/3

Vp = 1.00 m/s
FsAvg: 498.01 Hz

RMS: 0.95 mm/s

Figure 8: Long-range doublet-pulse velocity measurements of a stationary target
Doublet-pulse velocity measurements of a stationary target at 7.5 km (50 µs delay) using two
different local-oscillator controllers with a single local oscillator.  CTI controller number 23
demonstrating ~ 2 mm/s rms velocity noise (left panel) and controller number 21 demonstrating ~
0.95 m/s rms velocity noise (right panel).  Estimated LO frequency noise (short-dash), refractive
turbulence piston noise (dot-dot-dot-dash), photon noise (solid) and cumulative noise (long-dash).
The mean CNR in this data set was approximately 40 dB and the pulselet separation time was ~
40µs.  This data suggests that the velocity noise at 7.5 km is dominated by local oscillator noise.
The refractive turbulence piston velocity noise level is estimated to be approximately an order of
magnitude less.
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Figure 9: Short-range Doublet-pulse velocity measurements of a stationary target
Doublet-pulse velocity measurements of a short range stationary target (100 m left and 600 m
right) using controller number 23.  Estimated LO frequency noise (short-dash), refractive
turbulence piston noise (dot-dot-dot-dash), photon noise (solid) and cumulative noise (long-dash).
The mean CNR in this data set was approximately 40 dB and the pulselet separation time was ~
85µs.  This data suggests that at short range (130 m) all three noise sources contribute equally,
while at 600 m the LO frequency noise dominates and that the linear model of Eq. 20 is
reasonably valid.

2.6. Refractive Turbulence Piston Noise

Advection of patterns of spatial fluctuations of temperature or humidity across the lidar beam can result in
a time varying optical path length between the lidar and the target under observation.  The rate of change



of these variations appears in the Doppler signal as an apparent motion of the target in the lidar direction.
Ishimaru4 has carried out an analysis of these effects on the phase of a coherent laser signal assuming that
a Kolmogorov turbulence field of refractive index variations is being advected across the beam by the
local wind or by the beam motion itself.  His results can be expressed in terms of the power spectrum of
apparent target velocity fluctuations (Φ(ω) in m2/s2/Hz) according to
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Where Vp(r) and Cn
2(r) are the transverse component of the wind and the refractive index structure

constant respectively at the distance r along the line of sight and ω is the (radian) frequency.  For constant
Cn

2 and Vp the integral can be solved analytically in terms of the path length, L.
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In Figure 10, we present the vibration amplitude spectra form doublet-pulse measurements taken on two
consecutive days of a target at ~ 250m and overlay the above model for the velocity noise due to
refractive turbulence piston effects.  In the left panel the wind conditions were calm and the noise is seen
to exceed the turbulence model across the entire frequency band.  The right panel corresponds to data
taken under windy conditions (Vp ~ 10 m/s).  At frequencies below 10 Hz, the turbulence model fits well
to the elevated noise floor seen in the vibration spectra.  Above 10 Hz the noise is dominated by local
oscillator noise.
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Figure 10: Doublet-pulse vibration spectra of a stationary target at ~ 250 m.
Doublet-pulse velocity amplitude spectra for a stationary target at ~ 250 m under calm conditions
(Cn

2 ~ 5x10-14 m2/3 and V ~ 0.5 m/s (left panel)) and windy conditions (Cn
2 ~ 3x10-14 m2/3 and V ~

10 m/s (right panel)) and an overlay of the expected LO frequency noise (short-dash), refractive
turbulence piston noise (dot-dot-dot-dash), photon noise (solid) and cumulative noise (long-dash).
At frequencies below 10 Hz, the turbulence model fits well to the elevated noise floor seen in the
windy data (right panel).  The frequency resonance at ~ 10 Hz is due to a vibration frequency of
the target structure which was being driven by wind gusts.

                                                     
4 A. Ishimaru in Laser Beam Propagation in the Atmosphere, J. W. Strohbehn, ed.



3. EXPERIMENTS

The doublet-pulse transceiver was employed in an Air Force micro-Doppler measurement program.  This
program demonstrated the ability of the doublet-pulse concept to measure precision micro-Doppler
vibration spectra.  CTI measured the vibration spectra of an array of targets at both short and long range.
For many of the short-range measurements a co-located CW vibrometer collected simultaneous vibration
spectra.  In the following sections we describe some of the results from these measurements.

3.1. Short Range Micro-Doppler Measurements

The first set of measurements focused on short-range “proof of concept” measurements.  In this
measurement campaign the vibration spectra from the doublet-pulse transceiver was compared to that
collected using a CW vibrometer.  Sample results are provided Figure 11 for a vibrating speaker and
Figure 12 for the spectra of the door panel of a Toyota Celica at 2000 RPM is shown.  Excellent
agreement between the two sensors was obtained.  The energy of the double-pulse transceiver was heavily
attenuated to prevent receiver saturation.  The data in the left panel of Figure 12 indicates a spectral noise
floor on the order of 20 µm/s/root(Hz).  This corresponds to a velocity precision of 316 µm/s, for the 250
Hz Nyquist bandwidth.  The expected photon limited value assuming the measurement parameters (CNR1

= 31.2 dB, CNR2 = 29.9 dB, Ts = 40 µs, λ = 2 µm and Rayleigh fading) is 296 µm/s.  The expected noise
floor for the data in Figure 11 is about a factor of 2 less than the measured value.  The difference is
unexplained.
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Figure 11: CW and doublet-pulse vibration spectra of a Toyota Celica at idle.
Doublet-pulse (left) and CW vibrometer (right) vibration spectra of an speaker vibrating at 4125
Hz.  The doublet-pulse waveform PRF was 500 Hz and the CW lidar produced velocity estimates
at 2 kHz.  The expected value of the photon-shot noise is indicated by the straight line at ~ 10
µm/s/Hz1/2.
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Figure 12: CW and doublet-pulse vibration spectra of a Toyota Celica at idle.
Doublet-pulse (left) and CW vibrometer (right) vibration spectra of an idling Toyota Celica at 43
m.  The doublet-pulse waveform PRF was 500 Hz and the CW lidar produced velocity estimates
at 2 kHz.  The expected value of the photon-shot noise is indicated by the straight line at ~ 20
µm/s/Hz1/2.

3.2. Long Range Micro-Doppler Measurements

The second set of measurements focused on long-range (~ 7.5 km) measurements.  In this measurement
campaign the vibration spectra of the engine of a Toyota Celica were obtained.  Sample results are
provided in Figure 13.  The noise floor of ~ 100 µm/s/root(Hz) is thought to be dominated by local-
oscillator frequency noise, which is also the source of the 60, 120 and 180 Hz spectral peaks observed in
the engine-off data (right panel of the figure).
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Figure 13: Doublet-pulse vibration spectra of the engine of a Toyota Celica at 7.5 km.
Spectrum of the engine off (left) and idling (right) with an overlay of the expected LO frequency
noise (short-dash), refractive turbulence piston noise (dot-dot-dot-dash), photon noise (solid) and
cumulative noise (long-dash).  The noise floor is dominated by local-oscillator noise.  The noise
spikes at 60, 120 and 180 Hz are also from the local oscillator.  The CNR was ~ 40 dB for both
data sets.



4. SUMMARY AND CONCLUSIONS

Velocity precision models for micro-Doppler coherent laser radar sensors have been developed and
verified with experimental and simulated data.  The photon or shot-noise limited velocity precision was
shown to be proportional to the illumination wavelength.  A modified CRLB theoretical model was
developed for the doublet-pulse waveform.  This model was shown to agree with simulations for both
constant and speckle fading signals.  Speckle decorrelation models were shown to be proportional to the
illumination wavelength, provided the target was well resoled.  For an unresolved target the velocity noise
depends upon the total spread of target velocities and is therefore both range and wavelength independent.
An important parameter impacting the performance of the doublet-pulse waveform is the ratio of the
pulselet separation time to the coherence time of the return signal.  The optimum separation time was
shown to be ~ 65 % of the correlation time, for weak 10 dB CNR conditions.  A model for the impact of
refractive turbulence noise was also developed.  This wavelength independent model was shown to agree
with experimental data.

Results from a recent, highly successful, micro-Doppler measurement campaign utilizing both a doublet-
pulse and a CW transceiver were also presented.  The CW and doublet-pulse micro-Doppler data were
shown to be comparable.  Doublet-pulse velocity precision estimates at short ranges agree well with
photon limited noise estimates.  At the present time the CW SNR is unavailable therefore nothing can be
said about its velocity precision performance.  Long range (~ 7.5 km) vibration spectra were also
collected and agreed well with expectations.  The velocity precision of the long-range measurements was
shown to be dominated by local-oscillator frequency noise.  CTI plans to develop active stabilization
hardware to significantly reduce the level of local oscillator induced velocity noise.
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